Aussagenlogik

From Glottopedia
Jump to: navigation, search
REF This article has no reference(s) or source(s).
Please remove this block only when the problem is solved.

Die Aussagenlogik ist ein Bereich der Logik, der sich mit Aussagen und ihrer Verknüpfung durch Junktoren befasst.

Kommentare

Die Sprache der Aussagenlogik besteht aus Aussagenvariablen und Junktoren. Die Aussagenvariablen abstrahieren von der syntaktischen Form der Aussagen; die beiden Aussagen es regnet und die Strasse ist nass können durch A und B dargestellt werden. Durch Junktoren wie \and \or, \neg,\Rightarrow werden zusammengesetzte Formeln der Aussagenlogik gebildet. Die Aussage wenn es regnet, ist die Strasse nass kann durch die Formel A \Rightarrow B formalisiert werden. Belegt man die Variable mit Wahrheitswerten, kann der Wahrheitswert der gesamten Formel berechnet werden. Wenn z.B. A und B wahr sind, ist die Implikation A \Rightarrow B auch wahr. Interessante Fragestellungen sind dabei, ob eine gegebene Formel tautologisch, also wahr unter jeder möglichen Belegung der Aussagevariablen, oder unerfüllbar, also falsch unter jeder möglichen Belegung ist. Die Formel A \Rightarrow A ist offensichtlich tautologisch.

In Kalkülen für die Aussagenlogik werden mit Hilfe von Inferenzregeln Formeln aus gegebenen Formeln hergeleitet. Aus A und A \Rightarrow B kann z.B. mit der Regel Modus ponens auf B geschlossen werden. Die Aussagenlogik ist entscheidbar; es existieren Algorithmen, die feststellen, ob eine beliebige gegebene Formel tautologisch oder unerfüllbar ist.

Im Gegensatz dazu steht die Prädikatenlogik, welche sich mit den Strukturen von Aussagen befasst ohne die inhaltliche Bedeutung der vorkommenden Mengen, Funktionen und Prädikate in Betracht zu ziehen.